

AES NYC 2023 Workshop • 25 October 2023 Al for Multitrack Music Mixing

Soumya Sai Vanka¹ Christian J. Steinmetz¹ Gary Bromham¹ Marco A. Martínez-Ramírez² Junghyun Koo³ Brecht De Man⁴ Angeliki Mourgela⁵

¹ Centre for Digital Music, Queen Mary University of London

² Sony Research, Tokyo, Japan

³Music and Audio Research Group, Department of Intelligence and Information, Seoul National University

⁴PXL-Music, Hasselt, Belgium

⁵RoEx

SONY

Research

Presenters

Angeliki Mourgela

This session is brought to you by

Technical Committee on Machine Learning and Artificial Intelligence

https://www.aes.org/technical/mlai/

Introduction and Background

Brecht De Man

"Hey!" "Hi!"

Al for

- Multitrack
- Music
- Mixing

Book

https://dl4am.github.io/tutorial

Music mixing is a crucial task within audio post-production where expert knowledge is required to deliver professional music content []. This task encompasses both technical and creative considerations in the process of combining individual sources into a mixture, often involving the use of audio processors such as equalization, dynamic range compression, panning, and reverberation[WMMS20].

Due to this complexity, the field of intelligent music production (IMP) [SRDM19] has focused on the design of systems that automate tasks in audio engineering. These systems aim to lower the difficulty in creating productions by novice users, as well as expedite or extend the workflow for professionals [MS19b].

Powered by Jupyter Book

Audio Effects

Methods

Inference Datasets

Models

Training

Metrics

EVALUATION

CONCLUSION

Conclusions References

Future Directions

Loss Functions

Music Production

- Recent advances in large-scale deep learning
 - Differentiable mixing consoles
 - Mixing style transfer
- Importance of
 - Context in mixing
 - Interpretable systems
 - Interactive systems
- Challenges in system design
- Exchange and collaboration

Outline

Context and challenges	Gary
System components	Soumya
Methods	Marco, Tony, Christian
Automixing As Technology	Angeliki
Conclusion and Demonstrations	
Questions	You!

Y tho

Not so fast

Resistance is futile COMMON

I'M SORRY DAVE, I'M AFRAID I CAN'T DO THAT.

- Job security
- Sameness
- Copyright
- Ownership
- Lack of control

• ...

PES (Photography Engineering Society)

Learn all about:

- Auto-focus
- Auto-exposure
- Auto-flash
- Stabiliser
- Face detection
- Smile detection
- ...

PES (Photography Engineering Society)

- Amateur: No expertise required
- Professional: Increase productivity

Focus on creative aspects

Increased demand

- Man-made, linear, recorded music
- Live music
- Interactive music
- Generative music

AI comes in many forms

"The Black Box"

"The Assistant"

"The Diagnostician"

It looks like you are applying a LOT of reverb on this snare drum. Are you aware it isn't 1982?

History

Dan Dugan, "Automatic Microphone Mixing," Journal of the Audio Engineering Society, vol. 23, July/August 1975.

Automatic Microphone Mixing*

DAN DUGAN

San Francisco, Calif. 94108

A method of analysis of sound reinforcement problems by means of active and passive speech zones is outlined. The need for automatic coornol of multimicrophore systems is defined, along with the problems associated with the use of volce-operated switches (VOX). Adaptive threshold gating is proposed as the best solution to the problem of active microphone detection. The development and performance of two effective automatic control systems is described.

editori, ulong wan dae problema anectuad wan da uson war operad relate (100). Adaptive filmenindi gaing la proposed as the best relation is de problem of strate (100), defection. The development and performance of two effective attained compares described.

History 2007-2012

Legend

C	Level	
C	Panning	
C	EQ	
С	Several	

(14)

Brecht De Man, Ryan Stables and Joshua D. Reiss, "Ten Years of Automatic Mixing," Proceedings of the 3rd Workshop on Intelligent Music Production, Salford, UK, 15 September 2017.

History 2012-2017

Legend

C	Level	
C	Panning	
$\left(\right)$	EQ	
C	Compression	
C	Reverb	
		-

Brecht De Man, Ryan Stables and Joshua D. Reiss, "Ten Years of Automatic Mixing," Proceedings of the 3rd Workshop on Intelligent Music Production, Salford, UK, 15 September 2017.

History 2017-2023

https://csteinmetz1.github.io/AutomaticMixingPapers/

Context and Challenges

Gary Bromham

What is Mixing?

Technical

... a process in which multitrack material – whether recorded, sampled or synthesized–is balanced, treated and combined into a multichannel format.

Artistic

... a less technical definition, one that does justice to music, is that a mix is a sonic presentation of emotions, creative ideas and performance.

Context-Aware Intelligent Mixing Systems (IMS)

Lefford, M. Nyssim, Gary Bromham, Gyorgy Fazekas, and David Moffat. "Context aware intelligent mixing systems." Journal of the Audio Engineering Society, 2021.

Context and Intelligent Mixing Systems (IMS)

- Technical vs. aesthetic.
- Level of experience? **Am**ateur <> **Pro**fessional-**Am**ateur <> **Pro**fessional.
- Style, genre & taste in mixing.
- Mixing is essentially emotional.
- **IMS** struggles to communicate this.

Experience

Professional --> Professional - Amateur <-> Amateur (Hobbyist)

- Three distinct groups in the music production chain. Sandler, M. et al. 2019.
- All three groups have different motivations as mix engineers and producers.
- Intelligent music productions tools are often designed for those with less experience.
- Pro-Am's who are looking to attain professional-sounding results without much concern for how the goal is achieved.

Conventions and traditional paradigms

- Established conventions and existing workflows
- "I know what I like and I like what I know"
- Nostalgia as a motivation for developing tools in a DAW

Misappropriation of Music Production Tools

'Happy accidents'

Antares Autotune

The Language of Mixing - Semantics

- 'Studio Speak'
 - Cross-modal perception.
 - Semantic cross-talk. *Is it warmth or is it muddiness?* Wallmark 2019.
- Connects user input with machine functionality.
- Need for an ontology of audio descriptors which define musical and technical meaning. How can this help IMS? (Intelligent Music Systems)
 - <u>http://www.semanticaudio.co.uk</u>
 - SAFE Plugins. https://somagroup.co.uk/applications/safe-plugins

Waves Parallel Particles

SAFE Compressor

Challenges

- Resistance and aversion to AI-based tools & IMS with mix engineers and producers. Changing mindset.
 - Misconception that it is there to replace rather than assist and augment creative process.
- Limited datasets.
- Controllability
- Musical output can be homogenized and repetitive.

How can we reconcile?

Pros

- Speeds up workflow!
- Takes care of mundane tasks such as editing and labelling
- Presets! We've been using them forever anyway!
- Can assist creativity by offering suggestions when engineer lacks inspiration or ideas
- There has always been a resistance to adopt new technology! Get over it!

Cons

- Largely ignores context.
- Creativity often in the outliers in data. 'Creep' by Radiohead.
- Mixing is essentially an emotional response or reaction to a piece of music.

Context in Mixing

• Context in mixing could be something as obvious as style or genre or an emotional reaction to a piece of music.

• Mixing is essentially about delivering the emotional context of a musical piece and so far IMS cannot convey this.

Antares Autotune

Context and Intelligent Mixing Systems (IMS)

- Negotiating and reconciling the technical vs. aesthetic domains
- What is the role of experience? Amateur to professional and the emergence of the Pro-am (Professional amateur).
- How do we legislate for style, genre & taste in mixing? Two engineers will hear a mix very differently!
 - Agency, intention and tacit knowledge play a key role.
- Mixing is essentially about delivering the emotional context of a musical piece and so far IMS struggles to communicate this.

Context in Mixing

• Because mixing is a combination of technical and artistic (aesthetic) creative practice and decision-making it attempts to reconcile these two spaces.

• The technical part is much easier to replicate than the latter as it most often doesn't conform to strict rule sets.

 Intelligent Mixing Systems (IMS) are good at performing perfunctory tasks which adhere to established practices and acquired tacit knowledge but are less good at recognising context which is essentially a human-centric function.

Experience

Professional <-> Professional - Amateur <-> Amateur (Hobbyist)

- Three distinct groups in the music production chain.
- All three groups have different motivations as mix engineers and producers.
- Which groups are intelligent tools targeting?
- The interesting case of the Pro-Am's!
The Language of Mixing

- Semantics Is it warmth or is it muddiness?
- Language used in a studio has always been confusing.
- Need for descriptors to define musical and technical meaning.
- <u>http://www.semanticaudio.co.uk/</u>

Loudness

• The **average loudness** (LUFS) is computed, then each stem is loudness normalized

EQ

• The average frequency magnitude spectrum is computed, then we normalized each stem by performing EQ matching

Panning

 The average spectral-panning position is computed, and then we re-pan accordingly

Dynamic Range Compression

• The **average onset peak level** is computed, and we apply a compressor to upper bound the peak levels of the stems

Reverberation

- -A data augmentation approach where we stochastically add reverberation to already reverberated stems
- Then, the process of learning "the right amount of reverb" is carried out by the network by learning to filter out the additional reverberation

Part 2 System Components

Soumya Sai Vanka

Deep Learning

Can we **learn** to produce mixes directly from data?

What we want? (at Inference) MM MMM w MM \mathcal{M} Neural **Multitrack** Mix Network (Input) (Output)

Considerations

What we want?

Let's begin with simple case MMM MMM why MM \mathcal{M}

Multitrack (Input) Neural Network

Popular Multitrack Datasets

ENST-Drums

- 8 channels of drum components
- Recordings by 3 drummers
- Accessible on request
- Size: 1.25 hrs

MedleyDB and Mixing Secrets

- Complete songs with varied number of channels and instruments
- Different Genres
- Medley (7.2hrs) + Mixing Secrets (~50hrs)

MuseDB

- Stems have audio effects applied
- Four stems: Vocals, Bass, Drums, and Others
- Mostly rock, pop, and metal
- ~10hrs

We have very limited open source, time-aligned, real multi-track data capturing various genres and types of music.

Speech recognition: >300 hrs data Music sequence classification: 280 GB worth data

MoisesDB

MoisesDB is a comprehensive multitrack dataset for source separation beyond 4stems, comprising 240 previously unreleased songs by 47 artists spanning twelve high-level genres. The total duration of the dataset is 14 hours, 24 minutes and 46 seconds, with an average recording length of 3:36 seconds. MoisesDB is offered free of charge for noncommercial research use only and includes baseline performance results for two publicly available source separation methods.

More datasets

Slakh2100

Manilow, Ethan¹; Wichern, Gordon²; Seetharaman, Prem¹; Le Roux, Jonathan²

Show affiliations

Introduction:

The Synthesized Lakh (Slakh) Dataset is a dataset of multi-track audio and aligned MIDI for music source separation and multiinstrument automatic transcription. Individual MIDI tracks are synthesized from the Lakh MIDI Dataset v0.1 using professional-grade sample-based virtual instruments, and the resulting audio is mixed together to make musical mixtures. This release of Slakh, called Slakh2100, contains 2100 automatically mixed tracks and accompanying, aligned MIDI files, synthesized from 187 instrument patches categorized into 34 classes, totaling 145 hours of mixture data.

Open Multitrack testbed

Loss functions

Time domain (Audio Loss)	Frequency domain (Audio Loss)	Parameter Loss		
L())	£ (£ (€ ,€)		
Audio needs to be time aligned	Need to choose proper scaling that can capture perceptual qualities of sound	Multiple parameter combinations can lead to same result, may penalise the model unnecessarily		

Model Types

Direct Transformation

Black box system that lacks interpretability and controllability (context not incorporated)

Model Types

Parameter Estimation

(Parameter Loss)

Black box system that allows interpretability and controllability (context not incorporated)

Model Types

Black box system that allows interpretability and controllability (context not incorporated)

State of the Art

Direct Transformation

Wave-U-Net for drum mixing [a]

Trainin

FXmanipulator

Multitrack MSS Dataset

average features

Mixing style transfer [d]

Parameter Estimation

Mixing with neural mixing console [b]

[a] A Deep Learning Approach to Intelligent Drum Mixing With the Wave-U-Net, Martinéz et al. (JAES Mar, 2021)

[b] Automatic multitrack mixing with a differentiable mixing console of neural audio effects, Steinmetz et al. (ICASSP 2021)

[c] Automatic music mixing with deep learning and out-of-domain data, Martinéz et al. (ISMIR 2022)

[d] Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects, Koo et al. (ICASSP 2023)

A Deep Learning Approach to Intelligent Drum Mixing With the Wave-U-Net

- Pros: directly learns the audio transformation
- Limitations: Only drum mixing, number of tracks is fixed

Automatic multitrack mixing with a differentiable mixing console of neural audio effects

- Pros: Permutation invariant, works for any number of tracks, allows multitrack mixing
- Limitations: neural emulation of effects are difficult to train, doesn't work well for all cases (Could be due to lack of enough data)

Automatic music mixing with deep learning and out-of-domain data

- Pros: uses of wet/processed stems to train, creates possibility for using extensive source separation datasets with wet stems
- Limitations: lacks interpretability and controllability, works for 4 stems

Limitations

OUT OF CONTEXT

PAUL MCGEOWN (pmcgeown@imprint.uwaterloo.ca)

What we want?

Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects

- Pros: incorporates context through reference
- Limitations: mix to mix transfer, lacks interpretability

Summary

Model	System Type	Controllability	Context	Interpretability	Input Taxonomy
Wave-U-Net for drum mixing	Direct transformation	No	No	No	Drums only
Mixing with neural mixing console	Parameter estimation	Yes	No	Yes	Multitrack, permutation and number of tracks invariant
Mixing with out-of-domain data	Direct transformation	No	No	No	Wet stems, limited on number of tracks
Mixing style transfer	Direct transformation	No	Yes (reference song)	Yes	Mix and style reference mix

What's next?

Ideal design for an automatic mixing system

Part 3 Methods

Marco A. Martínez-Ramírez

Junghyun (Tony) Koo

Christian J. Steinmetz

FX Normalization

Sony Research

Automatic music mixing with deep learning and out-of-domain data ISMIR 22 Paper

Marco A. Martínez-Ramírez

Fx Normalization

Supervised Learning Approach

Challenging

Dry multitracks & Mixes

Data driven approaches need data, however, collecting dry data is difficult

Previous works

 Previous methods have not yet achieved the level of professional audio engineers mixes

 It has been hypothesized that the bottleneck of performance can be resolved with a large enough dataset

Research Question

• Can we use wet multitrack music data and repurpose it to train deep learning models that perform automatic music mixing?

How?

Wet multitracks already contain the desired mixing effects, which are what the networks need to learn

Data Normalization

We apply the same to audio effects !

Fx Normalization–EQ average features

EQ Normalization

We propose loudness, EQ, panning, compression and reverberation normalization procedures

• We use data preprocessing that calculates average features related to audio effects on a music source separation dataset

 Based on these features, we "effect-normalize" the wet stems and then train an automatic mixing network

• During training, the model learns how to denormalize the input stems and thus approximate the original mix

• At inference, the same preprocessing is applied to dry data

Evaluation

Listening Test

Perceptual listening tests have become the conventional way to evaluate these systems

There is no standardized test type or platform

We can design tests based on a set of best practices

Adjust them to the specific characteristics of the automatic mixing system

Nicholas Jillings, Brecht De Man, David Moffat and Joshua D. Reiss, "Web Audio Evaluation Tool: A Browser-Based Listening Test Environment," 12th Sound and Music Computing Conference, July 2015.

Listening Test

Criteria

Production Value

- Technical quality of the mix
- Subjective preferences related to the overall technical quality of the mix

Clarity

- Ability to differentiate musical sources
- This is entirely objective

Excitement

- A non-technical subjective reaction to the mix
- Not related to an evaluation of quality, but to a more personal perception of novelty

Results

Conclusion

- We developed a method that performs automatic loudness, EQ, panning, compression and reverberation music mixing
- Fx Normalization works !—Our approach leverages on wet data
- Resulting mixes compared to professional mixes scored higher in terms of Clarity and are indistinguishable in terms of Production Value and Excitement

Audio Effects Feature Learning

Junghyun (Tony) Koo

Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects ICASSP 23 Paper

What is Feature Learning?

Contrastive Learning - Recent Applications

Text Prompt Generative Models

Audio Text Paddling in the water Encoder T2 Ta Text - audio pairs $A_1 \cdot T_1 \quad A_1 \cdot T_2 \quad A_1 \cdot T_3$ Audio A2.T1 A2.T2 A2.T3 -1111-1-Encoder Azit, Azit, Azitz *** AzTN $A_N \cdot T_1 \quad A_N \cdot T_2 \quad A_N \cdot T_3 \quad \cdots \quad A_N \cdot T_N$ Text-to-Image

Text-to-Audio/Music

Contrastive Learning - Training Method

SimCLR

CLMR

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." *International conference on machine learning*. PMLR, 2020.

Contrastive Learning on Audio Effects

- Utilizes contrastive learning to understand audio effects.
- Objective: to disentangle mixing styles from musical content.
- Apply learnt representation to downstream task such as mixing style transfer.

Training Procedure of the FXencoder

Koo, Junghyun, et al. "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects." *ICASSP 2023.* IEEE, 2023.

Disentangled Representation

- t-SNE visualization on FXencoder
 - dimensional reduction on feature space
- 10 different random FX manipulation (color) on 25 different songs (point dot)

MEE (model trained with standard approach)

FXencoder

Disentangled Representation - Individual Instrument

bass

other

Music Mixing Style Transfer with FXencoder

• Training the mixing style converter is performed by utilizing the representation extracted with already-trained FXencoder

Music Mixing Style Transfer with FXencoder

• During inference stage, we can transfer mixing style of mixture-wise inputs using a music source separation (MSS) model

Demo - Mixing Style Transfer

Differentiable signal processing for automatic mixing

Christian Steinmetz

Neural networks that control DSP

- High-fidelity with minimal risk of introducing artifacts
- Audio processing is visible and controllable by end users
- Significantly more efficient enabling operation on CPU

Neural networks that control DSP

...but this requires haromization of signal processing and gradient-based learning

Techniques

1. Automatic differentiation (AD)

Engel et al. 2020

2. Neural proxies and hybrids (NP)

Steinmetz et al. 2020, Steinmetz et al. 2022

3. Numerical gradient approximation (NGA) Martínez Ramírez et al. 2021

Automatic Differentiation

Engel, Jesse, et al. "DDSP: Differentiable digital signal processing." *ICLR* (2021).

Neural Proxy

(3) Inference

Steinmetz, Christian J., et al. "Automatic multitrack mixing with a differentiable mixing console of neural audio effects." ICASSP, 2021.

Gradient Approximation

$$\frac{\hat{h}(x,p_i)}{p_i} = \frac{h(x,p+\varepsilon\Delta^P) - h(x,p-\varepsilon\Delta^P)}{2\varepsilon\Delta_i^P}, \quad (2)$$

where ε is a small, non-zero value and $\Delta^P \in \mathbb{R}^P$ is a random vector sampled from a symmetric Bernoulli distribution $(\Delta_i^P = \pm 1)$ [46].

Simultaneous perturbation stochastic approximation (SPSA)

Martínez Ramírez, Marco A., et al. "Differentiable signal processing with black-box audio effects." ICASSP, 2021.

Creating a differentiable mixing console

Transformation Network

Steinmetz, Christian J., et al. "Automatic multitrack mixing with a differentiable mixing console of neural audio effects." ICASSP, 2021.

Creating a differentiable mixing console

Steinmetz, Christian J., et al. "Automatic multitrack mixing with a differentiable mixing console of neural audio effects." ICASSP, 2021.

Creating a differentiable mixing console

Coming soon

DASP Differentiable audio signal processors in PyTorch

Reverberation

Compressor / Expander


```
Parametric Equalizer
```

Distortion

 $\left(\left((\bullet)\right)\right)$

Stereo Widener

Stereo Panner

with more coming...

Coming soon

DASP Differentiable audio signal processors in PyTorch

Pure functional interface for each audio processor

Differentiable implementations enable backprop

Can target CPU or GPU with support for batching

Permissive open source license (Apache 2.0)

E? 88 Questions

Commercialising Audio Research

Angeliki Mourgela

roex

Meet RoEx

William Trevis Full-stack Engineer Previously at Boeing and is an ex-founder 3 years of experience

Dr David Ronan CEO/CTO Former Head of Research at Al Music (Acquired by Apple) 14 years of experience

Dr Angeliki Mourgela Research Engineer Professional sound engineer by trade 13 years of experience

Research to product - Key Challenges

- What is a good mix? **Definition** and **target**
- Complexity and variety of genres
- **Balance** between user control and automation
- Quality of input audio is most likely not ideal

Current Market

- 14.6 million music creators online
- Most creators lack audio engineering skills
- User target group amateurs, pro-amateurs

Our technology

- Combination of machine learning and traditional audio engineering methods
- Genre-specific mixing and mastering
- User has **choice of** how much **control** they want to have both before and after the processing

User workflow - tackling the challenges

- Combination of machine learning models for corrective processing of the input audio to ensure quality
- Research-driven subgroup mixing approach (artificial limit of 8 tracks)
- Choice of **priority**, **pan and reverb** settings prior to mixing
- Mix preview and gain adjustments

Roex Automix Demo

Demos

Marco A. Martínez-Ramírez

Please rate each mix based on your overall preference

Please rate each mix based on your overall preference

Mixes

- I. (Koo et al., 2022a) Music Mixing Style Transfer with reference from MUSDB18
- 2. Mono mix
- 3. Gary Bromham Professional audio engineer mix
- 4. (Steinmetz et al., 2021) DMC mix trained with MedleyDB Gain and Panning
- 5. (Martinez-Ramirez et al., 2022) Fx Normalization
- 6. <u>RoEx</u>

Generative AI

Functional art

Text prompt

Outpainting

Style transfer

Resources

Book

https://dl4am.github.io/tutorial

Music mixing is a crucial task within audio post-production where expert knowledge is required to deliver professional music content []. This task encompasses both technical and creative considerations in the process of combining individual sources into a mixture, often involving the use of audio processors such as equalization, dynamic range compression, panning, and reverberation[WMMS20].

Due to this complexity, the field of intelligent music production (IMP) [SRDM19] has focused on the design of systems that automate tasks in audio engineering. These systems aim to lower the difficulty in creating productions by novice users, as well as expedite or extend the workflow for professionals [MS19b].

Powered by Jupyter Book

Audio Effects

Methods

Inference Datasets

Models

Training

Metrics

EVALUATION

CONCLUSION

Conclusions References

Future Directions

Loss Functions

Music Production

		A Tracking a	Autom cademic wo	rk in the field	of autor	I research natic multitrack au) udio mixing		
LIVE.	EQUALIZATION	COMPRESSION	PANNING	REVERB	MUTPLE	MACHINE LEASINING	KNOWLEDGE-BASED	OVERVIEW	CLEAR
Show 10	• entries						Searc	sh:	
Year	Title				Author(s)	Category	Approach	Code
2019	Modelling experts' decisions on assigning narrative importances of objects in a radio drama mix			E.T. Chourdakis et al.		Level	ML	CODE	
2019	Approaches in Intelligent Music Production			D. Moffat and M. B. Sandler		Multiple	Overview		
2019	Intelligent Music Production			B. De Man and J.D. Reiss and R. Stables		Multiple	Overview		
2019	An Automated Approach to the Application of Reverberation			D. Moffat	and M. B. Sandler	Reverb	ML	CODE	
2019	User-guided Rendering of Audio Objects Using an Interactive Genetic Algorithm			A. Wilson	and B. Fazenda	Level	ML		
2018	Automatic minimisation of masking in multitrack audio using subgroups			D. Ronan	et al.	Multiple	KBS	CODE	
2018	End-to-end equalization with convolutional neural networks			M. A. Martinez Ramirez and J. D. Reiss		Equalization	ML		
2018	Adaptive ballistics control of dynamic range compression for percussive tracks			D. Moffat	and M. B. Sandler	Compression	KBS	CODE	
2018	Automatic mixing of multitrack material using modified loudness models			S. Fentor		Level	KBS		
2018	Towards a semantic w rules	eb representation	and application	of audio mixing	D. Moffat Sandler	, F. Thalmann and M. B.	Multiple	KBS	
Showing	11 to 20 of 64 entries						Previous 1	2 3 4 5	5 6 7 Next
Cater	nories				Δnn	roaches		٠	

More works on automatic mixing research

Searchable/filterable table of relevant papers and stats

https://csteinmetz1.github.io/AutomaticMixingPapers

automix-toolkit

https://github.com/csteinmetz1/automix-toolkit

Star it on GitHub

csteinmetz1/automiz-toolikit Pulitic Q Pin Q Haw (U Pin) (U Pin) (U Pin)									
ŀ n	nain - P 4 branches 🛇 (About Models and datasets for training deep learning automatic mixing models & dikam github lohutorial automatic-mixing automatic-mixing							
ß	Your main branch isn't pro Protect this branch from force put								
8	sai-soum Merge pull request #6								
	automix								
	checkpoints	heckpoints adding checkpoint directory with readme 17 days ago							
	configs	updated model configurations	2 days ago	☆ 25 stars					
	docs/assets	adding new figures	3 days ago						
	notebooks	updated dataset notebooks	8 hours ago	¥ 1 fork					
	scripts	evaluation notebook, script	2 days ago	Releases					
	tests	adding DSD datalaoder	17 days ago	No releases outrished					
٥	.gitignore	ignore more files	2 days ago	Create a new release					
۵	LICENSE	Initial commit	3 months ago						
C	README.md	adding updates to README	3 days ago	Packages No packages published Publish your first package					
۵	setup.py	Merge pull request #8 from csteinmetz1/mamr	yesterday						
=	README.md		0	Contributors 3					
		automix-toolkit		csteinmetz1 Christian J. Steinmetz imarco-martinez-sony sal-soum Soumya Sal Vanka					
	Models an	Environments 1							
s	etup	💋 github-pages (Active)							
	python -m venv env source env/bin/activate		Languages						

Thank You

Question?