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Producing high quality audio requires expertise



Recordings

Can we learn to produce recordings directly data?
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Goals

What is mixing and what should we consider for automix systems?
Framework for understanding and designing automix systems
Technical understanding of two deep learning automix models
How to implement, train, and evaluate these models

|Ideas for future research directions
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Automatic Mixing

Search this book This is a web book written for a tutorial session of the 23rd International Society for Music
Information Retrieval Conference, Dec 4-8, 2022 held at Bengalur, India in hybrid
format. The ISMIR conference is the world's leading research forum on processing,

Deep Learning for Automatic Mixing
searching, organising and accessing music-related data.

AUDIO ENGINEERING

Audio Effects

Overview

Music Production v

AUTOMATIC MIXING Mixing is a central task within audio post-pi where expert is required

to deliver professional quality content, encompassing both technical and creative
inteligent Music Production

oroslom Formutat considerations. Recently, deep learning approaches have been introduced that aim to
roblem Formlation

address this challenge by generating a cohesive mixture of a set of recordings as would
an audio engineer. These approaches leverage large-scale datasets and therefore have

the potential to outperform traditional approaches based on expert systems, but bring

Methods v
Loss Functions

Differentiable sigrial processing their own unique set of challenges. In this tutorial, we will begin by providing an

IMPLEMENTATION introduction to the mixing process from the perspective of an audio engineer, along with a
discussion of the tools used in the process from a signal processing perspective.

inference
Datasets We will then discuss a series of recent deep learning approaches and relevant datasets,
Models providing code to build, train, and evaluate these systems. Future directions and
Training challenges will be discussed, including new deep learning systems, evaluation methods,
and approaches to address dataset availability. Our goal is to provide a starting point for
EVALUATION
researchers working in MIR who have little to no experience in audio engineering so they
Metles can easily begin addressing problems in this domain. In addition, our tutorial may be of
coNCLUSION interest to researchers outside of MIR, but with a background in audio engineering or

signal processing, who are interested in gaining exposure to current approaches in deep
learning.

Future Directions
Conclusions

References

https://dl4am.qithub.io/tutorial Motivation

Music mixing is a crucial task within audio p where expert is

required to deliver professional music content []. This task encompasses both technical
and creative in the process of combining individual sources into a mixture,

often involving the use of audio processors such as equalization, dynamic range
, panning, and IMS20].
Due to this complexity, the field of intelligent music production (IMP) [SRDM19] has

focused on the design of systems that automate tasks in audio engineering. These
Powered by Jupyter Book

systems aim to lower the difficulty in creating productions by novice users, as well as
expedite or extend the workflow for professionals [MS19b].
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http://www.youtube.com/watch?v=_UxEaHfqAvI

Music
Production

Music production is a multi-dimensional creative process
It defines the life cycle of a piece of music

- Composition
- Recording

- Editing

- Mixing

- Mastering

11



Audio mixing is the process of blending multitrack
recordings

- Technical considerations together with creative,
artistic or aesthetic decisions

Achieved with audio effects

- Gain

- Panning

- Equalization (EQ)

- Dynamic range compression (DRC)
- Artificial reverberation

12
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http://www.youtube.com/watch?v=J0iLbz6317E

Audio effects are widely used

- Music

- Live performances
- Podcasts

- Films

- Games

To manipulate sounds

- Dynamics

- Frequency content
- Spatialisation

- Timbre

tc electronic

14






input audio

MMMW—» { FX (insert) J—>

input audio

st

>

()

output audio

L

output audio

v
I ey

"

' |
J

Effect units can be applied as
send or insert effects

16



Panning

Stereo panning is the positioning of sound
sources using gain amplitude techniques that
create azimuthal cues from mono sources

17



Panning

- Implemented according to specific panning laws which operate within a /2 range
- Left and right speakers are at 0 and /2, respectively

- The range of the panning value 0 is defined as 8 € [0, /2]

Panning laws
- Linear panning
- Constant power panning

- -4.5dB panning

18



Panning laws

Linear panning

- The gains of the left and right channels, L(6) and R(6), sum to 1

Constant power panning

- The total power remains constant across all panning positions;

-4.5 dB panning

- Motivated for equal loudness panning, it is the square root of the
product of the linear and constant power laws
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Equalization

|\ [ EQ is the process of altering or adjusting the
O EER (e o O View: | 76% amplitude of various frequencies of a sound
It is used for many reasons, such as a

- Corrective filter to reduce masking

- Creative tool to shape harmonic and
timbral characteristics

Analyzer®« Q-Couple
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Equalization

Implemented via a filter bank whose coefficients are obtained from the designed
cut-off frequency fc and quality factor Q

The filter bank consists of Finite Impulse Response (FIR) or Infinite Impulse
Response (IIR) filters, whose discrete difference equation is respectively:

M—1 M—1 N
ym)= ) ax-x(n—%), ym=)Y acxn-k—)Y bi-ymn—k)
k=0 k=0 k=1

Where ak and bk correspond to the M filter coefficients
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Compression

Compression is a nonlinear audio effect that
is generally used to control the dynamic
range of a sound
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Nonlinear audio effects

Nonlinear signal processing systems that add harmonic or inharmonic frequency
components that are not present in the input signal

This is known as a harmonic and intermodulation distortion
Based on short term and long-term memory capabilities:
- Dynamic range processors (DRC) such as compressors or limiters

- Distortion effects such as tube amplifiers, fuzz distortion

25



Dynamic range processors

- The main purpose is to change the variation in volume of the incoming audio

- Apply a time-varying gain, which depends on an envelope follower along and
waveshaping nonlinearity

- This distorts the shape of the incoming waveform

- Long-term memory: the output depends on the current and previous samples
Parameters

- Threshold

- Ratio

- Attack and release times
- knee

26
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DRC types

Multiband Compression
- Applies compression to selected frequency bands via a filter bank

- Each band is individually compressed

Sidechaining Compression
- The compressor has an additional input ("side input")

- The compressor is activated when the level of the input or side input is above the
threshold

28
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http://www.youtube.com/watch?v=tuIgIS2o-rU&t=220

Artificial Reverberation
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In the music and film industry, artificial reverberation was initially developed as a
way of approximating acoustics of indoor spaces

This led to techniques that simulate reverberation, such as chamber, plate, spring
and digital reverberators



Artificial Reverberation

It consists of frequency-dependent reflections of delayed and attenuated copies of
the input or direct sound

Each reflection is defined by the directivity of the sound source as well as the
physical properties of the reflecting surfaces

Reflections can be divided into: direct sound, early reflections and late reflections

31
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Artificial Reverberation

Most digital techniques emulate the perceptual traits of impulse responses
Reverberation is approximately linear and time-invariant
Methods rely on digital filters, delay networks and convolution-based algorithms
Types of artificial reverberation

- Comb and allpass filters
Feedback delay networks

Convolutional
Electromechanical

33



Artificial Reverberation

Comb and allpass filters

- Comb filters add a delay version of the input
- Echoes that decay exponentially and are equally spaced in time: early reflections

ym) =x(n—M)+gy(n—N),

- Allpass filters modify the phase relationships
- Increases the overall echo density: late reflections

y(n) =x(n—M)—gx(n)+gy(n—M).

34



Artificial Reverberation

Convolutional

- Convolves the input signal with a recorded or estimated impulse response

Electromechanical

- Plate reverb is based on a large metal plate which vibrates due to a moving-coil transducer
- Sound travels faster in metal than in air—this increases the echo density

- Spring reverb is based on helical springs suspended under low tension.
- Spring vibrations results in an unusual combination of wave and dispersive propagation

35
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Automatic Microphone Mixing*

DAN DUGAN

San Francisco, Calif. 94108

A method of analysis of sound reinforcement problems by means of active and passive
speech zones is outlined. The need for automatic control of multimicrophone systems is
defined, along with the problems associated with the use of voice-operated switches (VOX).
Adaptive threshold gating is proposed as the best solution to the problem of active microphone
detection. The development and performance of two effective automatic control systems is

described.

A ZONAL THEORY OF SOUND REINFORCEMENT

A designer, engineer or contractor who works with
sound equipment every day naturally tends to think only
about the technical details when approaching a new prob-
lem. It is usual to start with deciding where to put the
speakers and microphones, and what models will be best
for the job. In most cascs, this approach is completely
valid. There is always a danger that our preoccupation
with equipment and specifications will make us miss the
real purpose of our efforts. A reinforcement system may
have —1 dB frequency response and still not fill the needs
of its users.

This paper describes some new inventions which prom-
ise 1o make the craft of sound reinforcement easier and
more satisfying. Before getting into the details, I would
like to make a short philosophical excursion into a sketch
for a general theory of sound reinforcement. This theory
is subject to much clarification and improvement.

Each person is the center of a zone in which he can
communicate verbally. The size of this zone depends on the
i ies of the i and on the per-

* Presented May 14, 1975, at the Convention of the Audio
Engincering Society, Los Angeles.

a42

son’s ability as a speaker. The variables affecting the size of
a person’s speech zone may be tabulated:

1) effort

2) vocal ability

3) hearing acuity

4) ambient noise

5) reverberation.

Items 1) — 3) are human variables, 5) and 6) are environ-
mental variables.

The border of this zone is not clearly defined, as all the
variables change constantly, and the human ones are
difficult to measure. If typical ranges of values are assigned
to the variables, however, the design of environments will
become possible in which speech will be relatively easy for
almost all people, just as a door is designed to be high
enough for people to pass without bumping their heads.

A frustrating thing about working in sound reinforce-
ment is the lack of a direct and positive measurement of
the effectiveness of communication transmitted through a
system. The best available measurement is the articulation
loss for AL [2]. M of AL gas
requires a group of observers whose responses can be
treated statistically; this is too complex a procedure for
daily use. AL, can be predicted from room data, but

i ion of these dicti is rare. N
AL g is the best measurement available for speech trans-
mission, and we will use the proposed 15% criterion.

JOURNAL OF THE AUDIO ENGINEERING SOCIETY

Dugan, 1975
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I dings of the 3" Workshop on Intelligent Music Prod

Salford, UK, 15 September 2017

TEN YEARS OF AUTOMATIC MIXING

Brecht De Man and Joshua D. Reiss

Centre for Digital Music
Queen Mary University of London
{b.deman, joshua.reiss}@qmul.ac.uk

ABSTRACT

Reflecting on a decade of Automatic Mixing systems for
multitrack music processing, this paper positions the topic
in the wider field of Intelligent Music Production, and seeks
to motivate the existing and continued work in this area.
Tendencies such as the i duction of machine learning and
the i i ity of d systems become ap-
parent from examining a short history of relevant work, and
several categories of applications are identified. Based on

Ryan Stables

Digital Media Technology Lab
Birmingham City University
ryan.stables@bcu.ac.uk

Meanwhile, professional audio engineers are often un-
der pressure to produce high-quality content quickly and at
low cost [3]. While they may be unlikely to relinquish con-
trol entirely to autonomous mix software, assistance with
tedious, time-consuming tasks would be highly beneficial.
This can be implemented via more powerful, intelligent, re-
sponsive, intuitive algorithms and interfaces [4].

Throughout the history of technology, innovation has
traditionally been met wi!h resistance and scepticism, in

lar from p ional users who fear seeing their roles

this systematic review, we highlight some promising direc-
tions for future research for the next ten years of Automatic
Mixing.

1. MOTIVATION

The d isation of audio technology has enabled music
production on limited budgets, putting high-quality results
within reach of anyone who has access to a laptop, a mi-
crophone and the abundance of free software on the web.
Similarly, musicians are able to share their own content at
very little cost and effort, again due to high availability of
cheap technology. Despite this, a skilled mix engineer is
often still needed in order to deliver professional-standard
material. Raw, recorded tracks almost always require a con-
siderable amount of processing before being ready for dis-
tribution, such as bal. panning, lisation (EQ),
dynamic range compression and artificial reverberation, to

nama a fow Fnrtharmara an amatane mncie nraducar will

dlsrupted or made obsolete. Music production technology
may be especially susceptible to this kind of opposition, as
it is ch ised by a tends towards Igia, skeuo-
morphisms and analogue workflows [1], and it is concerned
with aesthetic value in addition to technical excellence and
efficiency. However, the evolution of music is intrinsically
linked to the development of new instruments and tools, and
essentially utilitarian inventions such as automatic vocal rid-
ing, drum hi hanical keyboards and dig-
ital pitch correction have been famously used and abused
for creative effect. These advancements have changed the
nature of the sound engmeenng profession from primarily

hnical to 1 ive. Generally, there is eco-
nomic, technological and arusllc merit in exploiting the im-
mense computing power and flexibility that today’s digital
technology affords, to venture away from the rigid structure
of the traditional music production toolset.

electr

De Man et al., 2017

3. Deep Learning-based Systems
Martinez Ramirez et al., 2021 and Steinmetz et al. 2020
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Knowledge-based
or Expert systems

Design a set of rules based to create

a mix based on analysis of the inputs.

Pro: Explainable decisions

Con: Often lacks sufficient complexity

rule

Y

base|

meta  input

data  audio
"y
measurements
HPF
DRC
processing | | EQ
| fader
] pan pot
WY
mixdown £ || | 7
" 2 - - ->» text/metadata
%%C ; —> audio
—_——r _; stereo audio
__________ ,DRﬁg § multitrack audio
EQ I
output
audio

A knowledge-engineered autonomous mixing system
Brecht De Man, Joshua D. Reiss AES 2013



Machine Learning”

Learn to create a mix by leveraging

parametric data collected from pros.

Pro: Greater model flexibility

Con: Requires data (parametric)

*Approaches that use classical machine learning techniques
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Analysis of acoustic features for automated multitrack mixing
Jeffrey J. Scott. Youngmoo E. Kim ISMIR 2011
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Deep Learning

S

Mixes

Can we learn to produce mixes directly from data?

42
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Direct Transformation

Direct Transformation

44



Parameter Estimation
Parameter space loss

X1 X9 ... X P
1 2 N
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Parameter Estimation
(Parameter Loss)
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Parameter Estimation
Audio domain loss
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Differentiable signal processing

Neural network

* Control parameters

OOOOOOEE
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499464 &b

Signal processing

- Leveraging existing DSP tools and knowledge
- High quality audio processing with few artifacts
- Human understandable outputs that can be adjusted

- Efficient and can easily run in real-time on CPU

47



Differentiable signal processing

Non-differentiable

Backpropgation through

Discontinuous the DSP is non-trivial

(Discrete options)

Recursive operations

—— Audio 4

............... Parameters

----- Gradients y L'(y, Y




Techniques

Automatic differentiation (AD)
Engel et al. 2020

Neural proxies and hybrids (NP)

Steinmetz et al. 2020, Steinmetz et al. 2022

Numerical gradient approximation (NGA)

Martinez Ramirez et al. 2021

49



Automatic differentiation

A =10 #x (gain_dB / 40.0)

wb = 2 x math.pi x (cutoff_freq / sample_rate)
Ipha = t sin(we) / (2 = q_factor)

05_wo

qrt_a

if filter_type == "high_shelf":
b0 = A x ((A+1) + (A-1) % cos_wd + 2  sqrt_A * alpha)
bl=-2% A% ((A-1)+(A+1) %
b2 =Ax ((A+1) + (A-1) % co
a0 = (A +1) - (A-1) % cos w0 + 2 x
al=2x ((A-1) - (A+1) % cos_wo)
@2 = (A+1) - (A-1) = cos w0 - 2 %

White-box

cos_wo)

- 2 % sqrt_A * alpha)
sqrt_A * alpha

sqrt_A * alpha

Requires hacks or X
tricks for each DSP

Explicitly define signal
processing operations in
autodiff framework

Doesn't work for all )
kinds of DSP —— Audio i

--------------- Parameters PyTorch  TensorFlow

----- Gradients y L(y, Y

Engel, Jesse, et al. "DDSP: Differentiable
digital signal processing." ICLR (2021).



Neural proxy

Audio Effect

Waveform
.. © f Processed waveform
(1 ) Pretralmng Parameters @ @ @ Y
by

Neural network
— Processed waveform
g )

(2) Training

Frozen DSP neural proxy

(3) Inference

—— Audio Y

............... Parameters

* Steinmetz, Christian J., et al. "Automatic multitrack mixing with a
) differentiable mixing console of neural audio effects." ICASSP, 2021.
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----- Gradients y L@y




Neural proxy hybrid

(2) Training [ Audio Effect
5 Use original DSP during inference

(3) Inference

—— Audio

............... Parameters

----- Gradients




Gradient approximation

——— Audio

Parameters

Gradients

Finite differences (FD)

central-difference
backward-difference

U forward-difference

i’(X’Pi) _ h(x,p + EAP) - h(X,p - SAP)
i 2eAP

@

where ¢ is a small, non-zero value and AP € R? is a ran-
dom vector sampled from a symmetric Bernoulli distribu-
tion (AF = £1) [46].

Simultaneous perturbation stochastic
approximation (SPSA)

Martinez Ramirez, Marco A, et al. "Differentiable signal
processing with black-box audio effects." ICASSP, 2021.
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Deep Learning Models

X1 X2 XN
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Vr Yr

Mix-Wave-U-Net Differentiable Mixing Console

Direct Transformation Parameter Estimation

“A Deep Learning Approach to Intelligent Drum Mixing with “Automatic Multitrack Mixing with a Differentiable Mixing
Wave-U-Net”, Martinez Ramirez et al. 2021 Console of Neural Audio Effects”, Steinmetz et al. 2021
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Mix-Wave-U-Net

Direct transformation
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X1 X9 ... XN

b

[ Convid ]
BatchNorm1d
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Concat ]
A

[ LeakyRelLU ]
BatchNorm1d
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[ Downsample ] Downsampling
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»

Downsampling Block 2

Downsampling Block L

[ |
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Mix-Wave-U-Net

A Deep Learning Approach to Intelligent Drum
Mixing with the Wave-U-Net

Marco A. Martinez Ramirez!*, Daniel Stoller'*, AND David Moffat?, AES Student Member

(m.a.martinezramirez@gmul.ac.uk) (d.stoller@gmul.ac.uk) (david.moffat@ plymouth.ac.uk)

Y Centre for Digital Music, Queen Mary University of London, London, United Kingdom
University of Plymouth, Plymouth, United Kingdom

* These authors contributed equally to this work.

The development of intelligent music production tools has been of growing interest in re-
cent years. Deep learning approaches have been shown as being a highly effective method
for approximating individual audio effects. In this work, we propose an end-to-end deep neu-
ral network based on the Wave-U-Net to perform automatic mixing of drums. We follow an
end-to-end approach, where raw audio from the individual drum recordings is the input of the
system and the waveform of the stereo mix is the output. We compare the system to exist-
ing machine learning approaches to intelligent drum mixing. Through a subjective listening
test, we explore the performance of these systems when processing various types of drum
mixes. We report that the mixes generated by our model are virtually indistinguishable from
professional human mixes, while also outperforming previous intelligent mixing approaches.

X1 X2 ... XN

Convid LeakyRelLU

| BatchNorm1d | BatchNorm1d
LeakyRelU Convid
> Concat
Downsampling Upsample Upsampling
Block 1 Block 1
Dowr ing Block 2 > L ing Block 2
Dy Block L > ] ling Block L
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wave - U - N et Source 1 output Source K-1 output

Music source separation Mixtins &iidio F 5

T I 1D Convolution, Size 1 |
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v
| 1D Convolution, Size 15 l | 1D Convolution, Size 5 |
A
..................................................... .>
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| Downsampling l | Upsampling |
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Wave-U-Net

Source 1 output

Source K-1 output

WAVE-U-NET: A MULTI-SCALE NEURAL NETWORK FOR
END-TO-END AUDIO SOURCE SEPARATION

Daniel Stoller
Queen Mary University of London
d.stoller@gmul.ac.uk

ABSTRACT

Models for audio source separation usually operate on
the magnitude spectrum, which ignores phase information
and makes separation performance dependant on hyper-
parameters for the spectral front-end. Therefore, we in-
vestigate end-to-end source separation in the time-domain,
which allows modelling phase information and avoids fixed
spectral transformations. Due to high sampling rates for
audio, employing a long temporal input context on the sam-
ple level is difficult, but required for high quality separation
results because of long-range temporal correlations. In
this context, we propose the Wave-U-Net, an adaptation
of the U-Net to the one-dimensional time domain, which
repeatedlv resamples feature maps to compute and com-

Sebastian Ewert
Spotify
sewert@spotify.com

Simon Dixon
Queen Mary University of London
s.e.dixon@gmul.ac.uk

This approach has several limitations. Firstly, the STFT
output depends on many parameters, such as the size and
overlap of audio frames, which can affect the time and
frequency resolution. Ideally, these parameters should be
optimised in conjunction with the parameters of the sep-
aration model to maximise performance for a particular
separation task. In practice, however, the transform pa-
rameters are fixed to specific values. Secondly, since the
separation model does not estimate the source phase, it is
often assumed to be equal to the mixture phase, which is
incorrect for overlapping partials. Alternatively, the Griffin-
Lim algorithm can be applied to find an approximation to a
signal whose magnitudes are equal to the estimated ones,
but this is slow and often no such signal exists [8]. Lastly,
the mixture phase is ignored in the estimation of sources.
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Mix-Wave-U-Net

Downsampling block
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Mix-Wave-U-Net

Downsampling block
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Mix-Wave-U-Net
Upsampling block
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Mix-Wave-U-Net
Output layer

A A~

YL YR

tf

X1 X2 ... XN

Decolen (G = 100 =2 9E) / ........................

Decoders(Cjp, = 200, Cpyr = 100) /

/

DeCOdCrG(Cin = 3200, Cout = 1600) /
[ Lincar(Ci, = 6400, Cpuy = 32000 ] 77 >

hidden size=3200
2 bidirectional layers

Encoders (Cj, = 1600, Cour = 3200) '\

Encoder(Cip, = 100, Couy = 200) b

Encoder (Cip, = 2, Cour = 100) \ id

/\/\\/WW

[ Convid ]
> Concat ]
A

[ LeakyReLU ]

| BatchNormid |
[ Convid

>[ Concat
[ Upsample

!

Upsampling Block 2

Upsampling Block L

Upsampling
Block 1

63



Differentiable Mixing Console

Parameter estimation
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Differentiable Mixing Console
Encoder
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Differentiable Mixing Console
Post-processor

Post-processor
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Differentiable Mixing Console
Transformation Network

Transformation Network
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Differentiable Mixing Console

Gain + Panning (Proxy network is not used)
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Differentiable Mixing Console
Proxy Networks

X

'

TCN Block 1

TCN Block 2

TCN Block L

'

y

69



Differentiable Mixing Console
Proxy Networks
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Differentiable Mixing Console
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Loss functions

Time domain

Frequency domain
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Stereo loss function

Loss function to encourage realistic mixes

L1=1
‘{ 120 L7 and L2 loss on stereo

L1=2 - ; .
i here s more 5 signals encourage panning
perceptually similar but GT all elements to the center.
gives a higher L1 loss

Left Right
Ysum = Yleft + Yrighit éStereo (:&; y) - gMR—STFT (?jsum; ysum) + eMR-STFT (gdif‘f) ydiff)

Ydiff = Yleft — Yright Achieves invariance to stereo (left-right) orientation

73



auraloss
A collection of audio-focused loss functions in PyTorch

[PDF]

Setup

pip install auraloss

Usage
import torch
import auraloss
mrstft = auraloss.freq.MultiResolutionSTFTLoss ()

input = torch.rand(8,1,44100)
target = torch.rand(8,1,44100)

loss = mrstft(input, target)

https://qithub.com/csteinmetz1/auraloss

Loss function

Error-to-signal ratio (ESR)

DC error (DC)

Log hyperbolic cosine (Log-cosh)
Signal-to-noise ratio (SNR)

Scale-invariant signal-to-
distortion
ratio (SI-SDR)

Scale-dependent signal-to-
distortion
ratio (SD-SDR)

Aggregate STFT

Aggregate Mel-scaled STFT

Multi-resolution STFT

Random-resolution STFT

Interface

Time domain

auraloss.time.ESRLoss ()

auraloss.time.DCLoss ()

auraloss.time.LogCoshLoss()

auraloss.time.SNRLoss ()

auraloss.time.SISDRLoss ()

auraloss.time.SDSDRLoss ()

Frequency domain

auraloss.freq.STFTLoss()

auraloss.freq.MelSTFTLoss(sample_rate)

auraloss.freq.MultiResolutionSTFTLoss ()

auraloss.freq.RandomResolutionSTFTLoss ()

Reference

Wright & Valimaki,
2019

Wright & Valimaki,
2019

Chen et al., 2019

Le Roux et al., 2018

Le Roux et al., 2018

Arik et al., 2018

Yamamoto et al.,
2019*

Steinmetz & Reiss,
2020

Sum and difference STFT loss

auraloss.freq.SumAndDifferenceSTFTLoss ()

Steinmetz et al., 2020

Sum and difference signal
transform

FIR pre-emphasis filters

Perceptual transforms

auraloss.perceptual.SumAndDifference()

auraloss.perceptual.FIRFilter()

Wright & Valimaki,
2019 74


https://github.com/csteinmetz1/auraloss
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Implementation
Part 3
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You can save your results and come
back later if you click “Copy to Drive”

() O1_inference.ipynb

(
File Edit View Insert Runtime Tool elp
— + Code + Text # Copy to Drive
(0}
~ Inference
{x}

In this notebook we will demonstrate how to use two pretrained models to generate multitrack mixes of drum recordings. We provide models
(] trained on the ENST-drums dataset, which features a few hundred drums multitracks and mixes of these multitracks made by professional
audio engineers. We train two different multitrack mixing model architectures: the Differentiable Mixing Console (DMC), and the MixWaveUNet.
First we will download the model checkpoints and some test audio, then load up the models and the audio tracks and generate a mix that we
can listen to.

Note: This notebook assumes that you have already installed the automix package. If you have not done so, you can run the following:
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In this notebook we will demonstrate how to use two p| ined models to multi mixes of
[} drum recordings. We provide models trained on the ENST-drums dataset, which features a few hundred

drums multitracks and mixes of these multitracks made by professional audio engineers. We train two
different multitrack mixing model architectures: the Differentiable Mixing Console (DMC), and the
MixWaveUNet. First we will download the model checkpoints and some test audio, then load up the
models and the audio tracks and generate a mix that we can listen to.

Note: This notebook assumes that you have already installed the automix package. If you have not done
s0, you can run the following:

1pip install git+https://github.com/csteinmetzl/automix-toolkit i I

import os
import glob

import torch

import torchaudio

import numpy as np

import IPython

import IPython.display as ipd
import matplotlib.pyplot as plt
import librosa.display
tmatplotlib inline

%load_ext autoreload

$autoreload 2

from automix.system import System

~ Download the pretrained models and multitracks .

Jjupyter

First we will download two different pretrained models. Then we will also download a .zip file containing

® X


https://colab.research.google.com/github/csteinmetz1/automix-toolkit/blob/main/notebooks/01_inference.ipynb
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~ Datasets for automix systems

)

In this notebook, we will first discuss the datasets used to train the automix systems. Thereafter, we will
[} see how to pre-process the data and set up the dataloaders for training the deep learning models for
these systems.
Training automix models requires paired multitrack stems and their corresponding mixdowns. Below
listed are the desired properties for these datasets:
1. Time alligned stems and mixes : We require time-alligned stems and mixes to allow the models to
learn timewise transformation relationships.

2. Diverse instrument categories : The more diverse the number of instruments in the dataset, the
more likely is the trained system to perform well with real-world songs.
. Diverse genres of songs : The mixing practices vary slightly from one genre to another. Hence, if the

dataset has multitrack mixes from different genres, the trained system will be exposed to more
diverse distribution of data.

w

IS

. Dry multitrack stems : Mixing involves processing the recorded dry stems for corrective and
aesthetic reasons before summing them to form a cohesive mixture. For a model to learn the correct L 1 k
way to process the stems to generate mixes, we need to train it on dry unprocessed stems and mix I n
pairs. However, more recently approaches to use processed stems from datasets like MUSEDB to
train automix systems have been explored. These approaches use a pre-processing effect
normalisation method to deal with pre-processed wet stems. For the scope of this tutorial, we do not
discuss these methods. However, we recommend having a look at this paper being presented at
ISMIR 2022.

Here we list the datasets available for training automix systems.
< Dataset Size(Hrs) no. of Songs  no. of Instrument Category ~no. of tracks Type Usage Permissions
MedleyDB 7.2 122 82 126 Multitrack, Wav  Open 44, . .
ENST Drums 1.25 = 1 8 Drums, Wav/AVI  Limited
m Cambridge Multitrack >3 >50 >5 570 Multitrack, Wav  open 4,

| Waiting for clients6.google.com... - J u pyte r

=

S



https://colab.research.google.com/github/csteinmetz1/automix-toolkit/blob/main/notebooks/02_datasets.ipynb
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In this notebook we will dig into how the two automatic mixing models we discussed can be implemented
in PyTorch. As usual, we will assume you have already installed the automix package from automix-
toolkit. If not you can do it with the following command:

!pip install git+https://github.com/csteinmetzl/automix-toolkit

import os

import torch

import numpy as np

from automix.utils import count_parameters

MixWaveUNet

First, we will take a look at the Mix-Wave-U-Net. Recall that this model is based on Wave-U-Net a time
domain audio source separation model that is itself based on the famous U-Net architecture.

The overall architecture for the network is comprised of two types of blocks: the Downsampling blocks
(shown on the left) and the Upsampling blocks (shown on the right). In the network we apply a certain
number of these blocks, downsampling and then upsampling the signal at different temporal resolutions.
Unique to U-Net like archi is the charact istic skip connections that carry information from the
each level in the downsampling branch to the respective branch in the upsampling brach.

-

X1 X2 .. XN

!

Convid

LeakyRelLU

Models

Link

Jupyter
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https://colab.research.google.com/github/csteinmetz1/automix-toolkit/blob/main/notebooks/03_models.ipynb
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~ Training

In this notebook we will go through the basic process of training a an automatic mixing model. This will
involve combining a dataset with a model and an appropriate training loop. For this demonstration we will
PyTorch Lightning to faciliate the training.

Dataset

For this demonstration we will use the subset of the DSD100 dataset. This is a music source separation
data, but we will use it to demonstrate how you can train a model. This is a very small subset of the
dataset so it can easily be downloaded and we should not expect that our model will perform very well
after training.

This notebook can be used as a starting point for example by swapping out the dataset for a different
dataset such as ENST-drums or MedleyDB after they have been downloaded. Since they are quite large, we
will focus only on this small dataset for demonstration purposes.

GPU

This notebook supports training with the GPU. You can achieve this by setting the Runtime to GPU in
Colab using the menu bar at the top.

Learn More

If you want to train these models on your own server and have much more control beyond this demo we
encourage you to take a look at the training recipes we provide in the automix-toolkit repository.

But, let's get started by installing the automix-toolkit.

[ ] !pip install git+https://github.com/csteinmetzl/automix-toolkit

[ ] import os
import torch
import pytorch lightning as pl

X

Jupyter
-


https://colab.research.google.com/github/csteinmetz1/automix-toolkit/blob/main/notebooks/04_training.ipynb
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Evaluation
Part 4

!"{.”- ' Marco A. Martinez-Ramirez

-

N



Evaluation

Music mixing is inherently a creative process and
therefore a highly subjective task

It cannot be categorized as correct or incorrect
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Evaluation

There is not a single metric that will fully encompass
the production quality of a generated mix

The use of a professional mix as the ground truth can
be an indicator of performance

However, a mix that deviates from the ground truth is
not always an aesthetically unpleasant or “bad” mix.
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Objective Metrics

Objective evaluation of music production tasks remains an open field of research

No audio feature, loss function or deep learning embedding have yet
been found that fully represent solely the mixing processing

We can use audio features related to mixing audio effects as a way to numerically
approximate the evaluation of mixes
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Objective Metrics

- Objective evaluation of music production tasks remains an open field of research

- No audio feature, loss function or deep learning embedding have yet
been found that fully represent solely the mixing processing

- We can use audio features related to mixing audio effects as a way to numerically
approximate the evaluation of mixes

Shortcomings
- Cannot capture production quality or aesthetic improvements
- Cannot evidence artifacts within the mix

- lll-posed problem; deviating from the ground truth does not always mean the mix is
incorrect
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Audio Features

Spectral features
- EQ and reverberation
- Spectral centroid, bandwidth, contrast, flatness, and roll-off

Spatialisation features
- Panning
- Panning Root Mean Square (RMS)

Dynamic features
- DRC
- RMS level, dynamic spread and crest factor

Loudness features
- The integrated loudness level (LUFS) and peak loudness
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~ Evaluation

In this notebook we will demonstrate how to evaluate a set of generated mixes via objective metrics.

We will use the mixes generated from the inference notebook, and we will objectively compare those
mixes to the human-made groudn truth mixes.

The objective evaluation of mixes can be carried out through audio features that relate to the most
common audio effects used during mixing. Since audio effects generally manipulate audio characteristics
such as frequency content, dynamics, spatialization, timbre, or pitch, we can use audio features that are

associated with these audio istics asaway tor ically evaluate mixes.

We can use the following audio features:
-Spectral features for EQ and reverberation: centroid, bandwidth, contrast, flatness, and roll-off
-Spatialisation features for panning: the Panning Root Mean Square (RMS)

-Dynamic features for dynamic range processors: RMS level, dynamic spread and crest factor

-Loud: features: the ir d loudness level (LUFS) and peak loudness

To capture the dynamics of audio effects information we can compute the running mean over a fixed
number of past frames. We can calculate the mean absolute percentage error (MAPE) between the target
and output features to get a better understanding of the overall relative error.

Note: This notebook assumes that you have already installed the automix package.

[ ] !pip install git+https://github.com/csteinmetzl/automix-toolkit

import os

import glob
import torchaudio
import numpy as np

import IPython
import IPython.display as ipd
import matplotlib.pyplot as plt

e

Evaluation

Link
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https://colab.research.google.com/github/csteinmetz1/automix-toolkit/blob/main/notebooks/05_evaluate.ipynb

Listening Test

Perceptual listening tests have become the
conventional way to evaluate these systems

There is no standardized test type or platform
We can design tests based on a set of best practices

Adjust them to the specific characteristics of the
automatic mixing system
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Listening Test

Several design decisions must be taken into account
- Type of test
- Number of stimuli
- Duration of the stimuli
- Criteria to be rated
- Requirements for the participants

- Listening environment
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Participants

Preferable to have participants with experience in
music mixing, or at least music making or critical
listening activities

Participants without such experience are likely to
not perceive production differences between
mixes

93



Listening Environment

The preferable listening setup is a listening
room with professional monitors and sound
installation

If this is not available, the use of high-quality
headphones is preferred

Take into account headphones stereo image
effect ("inside the head")
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Types of test

- Multi-stimuli tests are often preferred over pairwise or single stimulus tests
- Itis preferable for Participants to focus on the contrasting mix properties between mixes

- Pairwise tests are less reliable and discriminatory when the number of mixes to be
compared increases
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Types of test

- Most common types of multi-stimuli test:

- Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) test
(ITU-R, 2015)

- Audio Perceptual Evaluation (APE) test
(De Man and Reiss, 2014)
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MUSHRA

- Initially designed for measuring the perceptual quality of audio codecs

- Design constraints represent several limitations when evaluating music mixes
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MUSHRA

- Initially designed for measuring the perceptual quality of audio codecs

- Design constraints represent several limitations when evaluating music mixes
Professional human-made mix as reference can be problematic

- Not always rated highly

- Not recommended when the stimuli can outperform the hidden anchor
- Mixes are often not tested for their similarity to a reference mix
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MUSHRA

Low and mid anchors

When participants are experts, it might have a negative impact on the test results

Compresses the ratings of the other stimuli

Distracts participants from focusing on the contrastive differences within the mixtures

Not using anchors decreases the number of stimuli, thus, reducing listening time
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MUSHRA

Low and mid anchors

When participants are experts, it might have a negative impact on the test results

- Compresses the ratings of the other stimuli

Distracts participants from focusing on the contrastive differences within the mixtures

Not using anchors decreases the number of stimuli, thus, reducing listening time

If participants are not experts, the use of low and mid anchors can be beneficial
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MUSHRA

Duration stimuli
- MUSHRA method recommends using stimuli of less than 12 seconds

- Experts consider this duration to be too short to adequately assess quality within a set of
mixtures
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MUSHRA

In general, it is not recommended to fully follow the MUSHRA methodology, however, this
method could be further modified to fit the specific needs of this task
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MUSHRA

Reference Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
Play Play Play Play Play Play Play
100
Excellent
80
Good
60
Fair
40
Poor
20
Bad

MUSHRA test implemented with webMUSHRA (Schoeffler et al., 2018)
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APE

As an alternative for multi-stimuli testing (De Man and Reiss, 2014)

- All the stimuli are placed under the same continuous horizontal line, thus allowing an
instant visualization of the ratings

- The use of reference and anchor is optional as well as the maximum length of the stimuli

Listening test

( Manter Vo smo Corans

‘r a8

— - —
op Next

Which is the best mix?

&=
7

Worst Middie Best

00:00
u

APE test from Martinez-Ramirez et al. (2021a)
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Criteria

- The most common is to ask participants to rate mixes according to their preference
- This encompasses both technical and subjective criteria
- Based on a scale from 0 to 1 or from 0 to 100

- With or without the use of semantic labels
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Criteria

For a more detailed and discriminatory perceptual ratings, the overall preference could be
divided into:

- Production Value, Clarity and Excitement (Pestana and Reiss, 2014)

- Preference related to each audio effect, e.g. EQ, reverberation, panning, DRC and overall
mixing
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Criteria

Production Value

- Technical quality of the mix
- Subjective preferences related to the overall technical quality of the mix
- Considering all the audio mixing characteristics; such as dynamics, EQ, stereo image

Clarity

- Ability to differentiate musical sources
- This is entirely objective
- Corresponds to the perceived masking

Excitement

- A non-technical subjective reaction to the mix
- Not related to an evaluation of quality, but to a more personal perception of novelty
- Considering engaging, intriguing or thought provoking aspects within the mix
107



Advice
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Advice

- Participants should be blind to the stimulus as much as possible. The contrary
could lead to a negative bias towards fully automated generated mixes.

- Randomize the order of the stimuli and mixtures to be tested

- Participants with experience in mixing are preferable

- Conduct a pilot listening test

- Always write detailed instructions and, if possible, also provide verbal instructions

- Exclude participants if their total testing time is too short or if their results largely
deviate
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Advice

- Participants should be blind to the stimulus as much as possible. The contrary
could lead to a negative bias towards fully automated generated mixes.
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Advice

- Participants should be blind to the stimulus as much as possible. The contrary
could lead to a negative bias towards fully automated generated mixes.

- Randomize the order of the stimuli and mixtures to be tested

- Participants with experience in mixing are preferable

- Conduct a pilot listening test

- Always write detailed instructions and, if possible, also provide verbal instructions
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111



Advice

- Participants should be blind to the stimulus as much as possible. The contrary
could lead to a negative bias towards fully automated generated mixes.

- Randomize the order of the stimuli and mixtures to be tested

- Participants with experience in mixing are preferable

- Conduct a pilot listening test

- Always write detailed instructions and, if possible, also provide verbal instructions

- Exclude participants if their total testing time is too short or if their results largely
deviate
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Advice

- Participants should be blind to the stimulus as much as possible. The contrary
could lead to a negative bias towards fully automated generated mixes.

- Randomize the order of the stimuli and mixtures to be tested

- Participants with experience in mixing are preferable

- Conduct a pilot listening test

- Always write detailed instructions and, if possible, also provide verbal instructions

- Exclude participants if their total testing time is too short or if their results largely
deviate
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Advice

- Participants should be blind to the stimulus as much as possible. The contrary
could lead to a negative bias towards fully automated generated mixes.

- Randomize the order of the stimuli and mixtures to be tested

- Participants with experience in mixing are preferable

- Conduct a pilot listening test

- Always write detailed instructions and, if possible, also provide verbal instructions

- Exclude participants if their total testing time is too short or if their results largely
deviate
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Advice

- Collect additional data, such as age, gender identity, years of mixing experience,
and comments

- Keep the duration of the listening test under 45 minutes
- The max duration without listening fatigue affecting the results is 90 mins
(Schatz et al., 2012)
- Atraining stage may be beneficial to participants
- To fully assess a mix, experts prefer segments between 25 and 60 seconds

- Do not use a reference unless is needed for the specific mixing task

- Low and mid anchors are not to be necessary if participants are experts
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Advice

- Collect additional data, such as age, gender identity, years of mixing experience,
and comments

- Keep the duration of the listening test under 45 minutes
- The max duration without listening fatigue affecting the results is 90 mins
(Schatz et al., 2012)
- Atraining stage may be beneficial to participants
- To fully assess a mix, experts prefer segments between 25 and 60 seconds

- Do not use a reference unless is needed for the specific mixing task

- Low and mid anchors are not to be necessary if participants are experts
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Advice

- Collect additional data, such as age, gender identity, years of mixing experience,
and comments

- Keep the duration of the listening test under 45 minutes
- The max duration without listening fatigue affecting the results is 90 mins
(Schatz et al., 2012)
- A training stage may be beneficial to participants
- To fully assess a mix, experts prefer segments between 25 and 60 seconds

- Do not use a reference unless is needed for the specific mixing task

- Low and mid anchors are not to be necessary if participants are experts
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Advice

- The number of stimuli per multi-stimulus test page must be less than 12
(Stables et al., 2019)

- If labels are assigned to the rating scale, they must be properly defined and
explained to the participants

- Participants prefer synchronized playback between stimuli

- Loudness normalize, since loudness should not influence the rated criteria (except
for the cases where loudness is crucial to the criteria)

- Participants must limit the times they adjust the volume of their listening settings

- Professional speakers are preferred. Test exclusively with speakers or headphones,
but not allow both listening configurations
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Advice

- The number of stimuli per multi-stimulus test page must be less than 12
(Stables et al., 2019)

- If labels are assigned to the rating scale, they must be properly defined and
explained to the participants

- Participants prefer synchronized playback between stimuli

- Loudness normalize, since loudness should not influence the rated criteria (except
for the cases where loudness is crucial to the criteria)

- Participants must limit the times they adjust the volume of their listening settings

- Professional speakers are preferred. Test exclusively with speakers or
headphones, but not allow both listening configurations
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Platforms for multi-stimuli tests

Platform
Web Audio Evaluation Tool

(Jillings et al., 2015)

webMUSHRA
(Schoeffler et al., 2018)

goListen
(Barry et al., 2021b)

Multi-stimuli test

-MUSHRA

-APE

-Discrete

-Reference is optional

-MUSHRA

-MUSHRA
-Reference is optional

Features

-Training stage
-Loudness normalization
-Synchronized playback
-Randomization

-Training stage
-Fade-in/out
-Synchronized playback
-Randomization

-Synchronized playback
-Randomization

Usage

-Requires server

-PHP support has not been
updated

-Customization with effort

-Requires server
-Customization with effort

-Requires account

-Does not require server
-Customization with effort
-Ease-of-use
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Platforms

Listening test

Stop
Page 1 of 16
Arrange the mixes on the scale based on your preference
Bad Poor Fair Good Excellent
00:00
| 8 ]

Mastee Volume Control
0dB

APE test implemented with the Web Audio Evaluation Tool. Test
from Steinmetz et al., 2021c
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Platforms

Please click and rate each sample based on the following criteria

_ 0uB |
508 1012
play dry deums. play dry bass. play dry vocals play dry oher
R &2Adhi6 / Production Value
0 | very poor 25 | poor 50 | fair 75 | good
72') 75 | Clarity
0 | very poor 25 | poor 50 | fair 75 | good
#1845 | Excitement

0 | very low 25 | below 50 | average 75 | above

average average

100 | very

good

good

high

APE test implemented with the Web Audio Evaluation Tool. Test from Martinez-Ramirez

et al. (2022). For this test, dry stems were used as references.

This is based on feedback from pilot tests and was proposed by the expert participants
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Platforms

Reference Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 Cond.6
Play Play Play Play Play Play Play
100
Excellent
80
Good
60
Fair
40
Poor
20
Bad

MUSHRA test implemented with webMUSHRA (Schoeffler et al., 2018)
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Platforms

You must give a rating to each audio example

1 100 1 100 1 100 ® 100 1 100
t 80 1 80 t 80 80 t 80
& 60 1 60 , 60 60 t 60
40 1 40 40 40 t 40
20 20 20 20 | 20
0 ‘ 0 0 0 , 0
> 1 > 2 > 3 > 4 » 5

» REF

MUSHRA test implemented with goListen (Barry et al., 2021a)
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Listening Test Example

- Please open a listening test example at

https://golisten.ucd.ie/task/mushra-test/638b0c03d6a905906a2c4402
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Listening Test Example

- Please open a listening test example at

https://golisten.ucd.ie/task/mushra-test/638b0c03d6a905906a2c4402

- Which mix is the best based on your preference ?
- Which one do you think is a human mix (if there is any) ?

- Canyou find the low anchor ?

133


https://golisten.ucd.ie/task/mushra-test/638b0c03d6a905906a2c4402

Listening Test Example

e Mix#1-(Kooetal., 2022a) - Music Mixing Style Transfer with reference from MUSDB18

e Mix #2-Mono mix
e Mix # 3 - Gary's mix
e Mix # 4 - DMC mix trained with MedleyDB - Gain and Panning

e Mix #5-(Martinez-Ramirez et al., 2022) - Trained with MUSDB18

e Mix #6-(Martinez-Ramirez et al., 2022) - Trained with large dataset

134


https://jhtonykoo.github.io/MixingStyleTransfer/
https://marco-martinez-sony.github.io/FxNorm-automix/
https://marco-martinez-sony.github.io/FxNorm-automix/

Listening Test Example

e Mix#1-(Kooetal., 2022a) - Music Mixing Style Transfer with reference from MUSDB18

e Mix #2-Mono mix
e Mix # 3 - Gary's mix
e Mix # 4 - DMC mix trained with MedleyDB - Gain and Panning

e Mix #5-(Martinez-Ramirez et al., 2022) - Trained with MUSDB18

e Mix #6-(Martinez-Ramirez et al., 2022) - Trained with large dataset

Song: Isolate - Flare
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Future directions

Objective Metrics
- Deep features such as the embedding output of the Fx encoder proposed in (Koo et al.,

2022a) could also be used as an indicator of similarity for mixing processing

- Leveraging on general purpose deep features related to audio perception, such as the
Fréchet Audio Distance (Kilgour et al., 2019) can also be investigated

Explore limitations of the objective and subjective evaluation methods
- How can we measure whether the generated mixes have long-temporal coherence ?

- To measure mixing style coherence within different song elements such as verses,
choruses
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Differentiable Signal Processing

e Controlling audio effects using NN:

O

(@)

Audio y

Neural proxies
............... Parameters )
Gradient approximation methods ... Gradients ] L)

e Implementing audio effects as differentiable effects (can be embedded into
the neural network pipeline for training and backpropagation)

©)

O

Neural network can learn to control audio effects
Implementations available for dynamic range compressor, EQ, Artificial
reverberation, and distortion.

Differentiable mixing console with the chain of differentiable effects
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Datasets

e Ideal: Creating large, annotated, high-quality, open-source multitrack datasets

e Making the best use of what we already have: Can we use Source Separation
datasets?
o Recent work: (by Martinez et. al) uses pre-processing block for audio effect
normalisation
o Utilises source separation datasets for training automix models
o Next steps: Train Source Separation models to not just separate tracks but
also remove audio effects; generated dry stems could be used for remixing
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Generative models

The mixing task is a one to many mapping...

So we should treat it as such.

0.25

0.20

0.15

0.10

0.05

0.00

25

5.0

75

10.0
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GAN: Adversarial / ~_|Discriminator Generator 1
v X X — z X
training D(x) G(z)
VAE: maximize S8 . [Encuden z - x!
variational lower bound q¢(z|x)
Flow-based models: x| Flow .z " Inllfrse X!
Invertible transform of f(x) f (=)
distributions
Diffusion models:. X0 - X1 - Xo . . z
Gradually add Gaussian - - - - - - iaaiaa s B S E E
noise and then reverse
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Audio Production Representations

wav2vec
Output Y |:| I%] [:] |:| |:| D
Context representations C . .

Latent speech representations Z

Raw waveform X
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Can we build audio reprs. that encode only audio production details?

Mo rmul'vtl‘( Ifemg

Already-processed B el Tlgedes S Cemer st tylin e

Multitrack dataset | : A Pals R Rt P RS LI ® o LA ¥ S )

2 voC\U H_*_‘_ % .. . o5 r o' .."'-' o . i
odlr A AAr “r -

35

er)’

bals
+ 3 ot

A—r—
T =

FX oty M F o
. 3
—

(a) MEE (b) D5 (C) q)norm (d) q)p.sA

normalize |

droms

C bals
! VQO\U'

NS & (e) FX: panning - (f) FX: panning -

(g) FX: stereo (h) FX: stereo
4 Dorm D, imaging - ®uomm imaging - P,
e D) e - Fig. 2. t-SNE samples of embeddings from FX Encoders - multitrack
o — applied with full (a)~(d) or a single (e)~(h) FX manipulation
oty W

Music Mixing Style Transfer: A Contrastive Learning Approach To Disentangle Audio Effects
Koo et al., arXiv, 2022 https://arxiv.org/abs/2211.02247
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H 0D~

Takeaways

Mixing is a task that maps creative ideas and emotion to technical parameters
Approaches are often either direct transformation or parameter estimation
Evaluation remains challenging and we rely on well design listening tests

Many open questions and challenges with potentially fruitful outcomes
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© 0@ () csteinmetzavtomix-toolkit: v X |+

<« C & github.com/csteinmetz1/automix-toolkit Hh % € Ho@ % H»OE :
O Search or jump to... Pull requests Issues Codespaces Marketplace Explore +- @~
[ ] [ ] B csteinmetz1/automix-toolkit ' Public @ Unwatch 2 ~ % Fork 1~ Y Star 25
-
<> Code ( Issues I Pullrequests () Actions [ Projects [0 wiki @ Security |~ Insights @ Settings
# main -~} dbranches © 0tags Gotofile Add file ~ <> Code~ About 8

Models and datasets for training deep
Your main branch isn't protected learning automatic mixing models

Protect this branch ~ x
Protect this branch from force pushing, deletion, or require status checks before merging. Learn more

q

@ didam.github.ioftutorial

.-Features coming soon~

automix

= . Differentiable EQ & Compressor

DatalLoader for Mixing Secrets dataset

More pretrained models (+32 tracks)

https://github.com/csteinmetz1/automix-toolkit

#star  Star it on GitHub

St

python
—
source env/bai,/ooliiolc .
pip install --upgrade pip ® Jupyter Notebook 67.1%
® Python 32.1% Shell 0.8%

git clone https://github.com/csteinmetz1/automix-toolkit.git
cd automix-toolkit
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Abstract

Mixing is a central task within audio post-production where expert knowledge is
required to deliver professional quality content, encompassing both technical and
creative considerations. Recently, deep learning approaches have been introduced
that aim to address this challenge by generating a cohesive mixture of a set of
recordings as would an audio engineer. These approaches leverage large-scale
datasets and therefore have the potential to outperform traditional approaches based
on expert systems, but bring their own unique set of challenges. In this tutorial, we
begin by providing an introduction to the mixing process from the perspective of an
audio engineer, along with a discussion of the tools used in the process from a signal
processing perspective. We then discuss a series of recent deep learning approaches
and relevant datasets, providing code to build, train, and evaluate these systems.
Future directions and chall will be di: d, including new deep learning
systems, evaluation methods, and approaches to address dataset availability. Our
goal is to provide a starting point for researchers working in MIR who have little to
no experience in audio engineering so they can easily begin addressing problems
in this domain. In addition, our tutorial may be of interest to researchers outside of
MIR, but with a background in audio engineering or signal processing, who are
interested in gaining exposure to current approaches in deep learning.

On arXiv soon....
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